News | Artificial Intelligence | May 20, 2019

AI Detects Unsuspected Lung Cancer in Radiology Reports, Augments Clinical Follow-up

Research study demonstrates healthcare artificial intelligence application to detect and triage pulmonary nodules

AI Detects Unsuspected Lung Cancer in Radiology Reports, Augments Clinical Follow-up

May 20, 2019 — Digital Reasoning announced results from its automated radiology report analytics research. In a series of experiments on radiology reports from emergency departments, inpatient and outpatient healthcare facilities, Digital Reasoning used natural language processing (NLP) and machine learning (ML) to identify and triage high-risk lung nodules, achieving queue precision of 90.2 percent. The findings have now been published in the Journal of Clinical Oncology as part of the 2019 American Society of Clinical Oncology (ASCO) meeting proceedings.1

For health systems, reviewing incidental findings can be a time and labor intensive process.2 Other studies show the rate for timely clinical follow-up can fall as low as 29 percent across the industry.3 Applying advanced artificial intelligence (AI) to radiology reports to automate the identification and triage of pulmonary nodules, empowers doctors to focus on reviewing and acting on the most high-risk cases. This results in improved patient safety and faster time-to-treatment without excess labor.

During the research study, Digital Reasoning analyzed 8,879 free-text, narrative computed tomography (CT) radiology reports from Dec. 8, 2015 through April 23, 2017.  Today, those analytics are embedded in an enterprise solution utilized across more than 150 hospitals and 60 cancer centers in the United States.

For more information: www.ascopubs.org/journal/jco

References

1. French C., Makowski M., Terker S., et al. Automating incidental findings in radiology reports using natural language processing and machine learning to identify and classify pulmonary nodules. Presented at ASCO 2019. J Clin Oncol 37, 2019 (suppl; abstr e18093)

2. Rosenkrantz A.B., Xue X., Gyftopoulos S., et al. Downstream Costs Associated with Incidental Pulmonary Nodules Detected on CT. Acad Radiol., published online Aug. 6, 2018. pii: S1076-6332(18)30372-6, 2018

3. Blagev D.P., Lloyd J.F., Conner K., et al. Follow-up of Incidental Pulmonary Nodules and the Radiology Report. J Am Coll Radiol., published online Dec. 6, 2013. 13(2 Suppl):R18-24, 2016

Related Content

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI.

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI. Graphic courtesy of the Radiological Society of North America.

News | Artificial Intelligence | December 11, 2019
December 11, 2019 — Deep learning, a type of arti...
EMR patient portal on a smartphone
News | Electronic Medical Records (EMR) | December 11, 2019
December 11, 2019 — Despite the numerous benefits associated with patients accessing their medical records, a new stu
CT_Pediatric_Scan_Philips_Vereos_CT_RSNA 2016

Image courtesy of Philips Healthcare

News | Pediatric Imaging | December 10, 2019
December 10, 2019 — More than half of people who received...
Damage from concussion alters the way information is transmitted between the two halves of the brain, according to a new study presented today at the annual meeting of the Radiological Society of North America (RSNA).

Image courtesy of RSNA

News | Clinical Trials | December 10, 2019
December 10, 2019 — Damage from...
After receiving acupuncture treatment three days a week during the course of radiation treatment, head and neck cancer patients experienced less dry mouth, according to study results from researchers at The University of Texas MD Anderson Cancer Center

Image by Rudolf Langer from Pixabay 

News | Clinical Trials | December 06, 2019
December 6, 2019 — After receiving acupuncture treatment three days a week during the course of...
Timothy Whelan is a professor of oncology at McMaster University and a radiation oncologist at the Juravinski Cancer Centre of Hamilton Health Sciences. He holds a Canada Research Chair in Breast Cancer Research. Photo courtesy McMaster University

Timothy Whelan is a professor of oncology at McMaster University and a radiation oncologist at the Juravinski Cancer Centre of Hamilton Health Sciences. He holds a Canada Research Chair in Breast Cancer Research. Photo courtesy McMaster University. Photo courtesy of McMaster University

News | Breast Imaging | December 06, 2019
December 6, 2019 — A shorter course of higher-dose radiation treatment to part of the breast is showing promise in wo
MRI Exablate neuro helmet from INSIGHTEC

MRI Exablate neuro helmet from INSIGHTEC. Image courtesy of Ali Rezai, M.D., and RSNA.

News | Clinical Trials | December 03, 2019
December 3, 2019 — Focused ultrasound is a safe and effective way to target and open areas of the blood-brain barrier