News | Medical 3-D Printing | April 06, 2016

3-D Printed Skull Model Aids Teen's Cancer Surgery

Three-dimensional printed model offered vital road map to help doctors prepare for surgery

C.S. Mott Children's Hospital, 3-D printed skull, surgery planning, University of Michigan

A 3-D model of a patient’s skull helped doctors prepare for surgery to remove a rare, high-stage tumor. Image courtesy of University of Michigan Health System.

April 6, 2016 — Doctors at the University of Michigan’s C.S. Mott Children’s Hospital recently used 3-D printing to create a replica of a 15-year-old patient’s skull to determine how to remove a rare type of tumor.

What started as a stuffy-nose and mild cold symptoms for Parker Turchan led to a far more serious diagnosis: a tumor in his nose and sinuses that extended through his skull near his brain.

“He had always been a healthy kid, so we never imagined he had a tumor,” said Parker’s father, Karl. “We didn’t even know you could get a tumor in the back of your nose.”

The Portage, Mich. high-school sophomore was referred to Mott, where doctors determined the tumor extended so deep that it was beyond what regular endoscopy could see.

The team needed to get the best representation of the tumor’s extent to ensure that their surgical approach could successfully remove the entire mass.

“Parker had an uncommon, large, high-stage tumor in a very challenging area,” said Mott pediatric head and neck surgeon David Zopf, M.D. “The tumor’s location and size had me question whether a minimally invasive approach would allow us to remove the tumor completely.”

To help answer that question, teams at Mott crafted a 3-D replica of Parker’s skull.

The model, made of polylactic acid, helped simulate the forthcoming operation on Parker by giving U-M surgeons “an exact replica of his craniofacial anatomy and a way to essentially touch the ‘tumor’ with our hands ahead of time,” Zopf said.

Just as important, it also allowed the team to counsel Parker and his family by offering them a look at what lurked within — and, with the test run successfully complete, what would lie ahead.

The rare and aggressive tumor in Parker’s nose is known as juvenile nasopharyngeal angiofibroma, a mass that grows in the back of the nasal cavity and predominantly affects young male teens. Mott sees a handful of cases each year.

In Parker’s case, the tumor had two large parts: one roughly the size of an egg and the other the size of a kiwi. The mass sat right in the center of the craniofacial skeleton below the brain and next to the nerves that control eye movement and vision.

“We were obviously concerned about the risks involved in this kind of procedure, which we knew could lead to a lot of blood loss and was sensitive because it was so close to the nerves in his face,” said Karl, who nonetheless praised the 3-D methodology used to aid his son.

“It was pretty impressive to see the model of Parker’s skull ahead of the surgery. We had no idea this was even possible.”

Zopf, working with Erin McKean, M.D., a U-M skull base surgeon, was able to completely remove the large tumor. Kyle VanKoevering, M.D., and Sajad Arabnejad, M.D., aided in model preparation.

Through preoperative embolization, the blood supply to the tumor was blocked off the day before surgery to decrease blood loss. A large portion of the tumor was then detached endoscopically and removed through the mouth. The remaining mass under the brain was taken out through the nose.

Doctors took pictures of Parker’s anatomy during the surgery and, later, compared it to pictures from the model. They were nearly identical.

"Words alone can't express how thankful we are for Parker's talented team of surgeons at Mott,” said his mother, Heidi. “Parker is back to his old self again.”

Although medical application of the technology continues to gain attention, it isn’t entirely new. Zopf and Mott teams have used 3-D printing for almost five years.

3-D printed splints made at U-M have helped save the lives of babies with severe tracheobronchomalacia, which causes the windpipe to periodically collapse and prevents normal breathing. Mott has also used 3-D printing on a fetus to plan for a potentially complicated birth.

“We are finding more and more uses for 3-D printing in medicine,” Zopf said. “It is proving to be a powerful tool that will allow for enhanced patient care.”

Based on prior success in patients such as Parker and a continued collaborative effort, it’s a concept that appears poised to thrive.

“Because of the team approach we’ve established at the University of Michigan between otolaryngology and biomedical engineering, the printed models can be designed and rapidly produced at a very low cost,” Zopf said. “Michigan is one of only a few places in the nation and world that has the capacity to do this.”

For more information: www.mottchildren.org

Related Content

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Advanced Visualization | May 16, 2019
This is an example of how virtual reality is being used in neuro-radiology to better evaluate patients using advanced
Bioprinting research from the lab of Rice University bioengineer Jordan Miller featured a proof-of-principle — a scale-model of a lung-mimicking air sac with airways and blood vessels that never touch yet still provide oxygen to red blood cells.

Bioprinting research from the lab of Rice University bioengineer Jordan Miller featured a proof-of-principle — a scale-model of a lung-mimicking air sac with airways and blood vessels that never touch yet still provide oxygen to red blood cells. Image courtesy of Jordan Miller/Rice University.

News | Medical 3-D Printing | May 03, 2019
Bioengineers have cleared a major hurdle on the path to 3-D printing replacement organs with a breakthrough technique...
A 3-D printed tungsten X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | April 29, 2019 | By Steve Jeffery
In ...
California Hospital Adds Machine-Vision Image Guided Surgery Platform to New Operating Suites
News | Advanced Visualization | April 26, 2019
Pickup Family Neurosciences Institute at Hoag in Newport Beach, Calif., announced the addition of the 7D Surgical...
Graphic courtesy of Pixabay

Graphic courtesy of Pixabay

Feature | Artificial Intelligence | April 22, 2019 | By Greg Freiherr
...
Technological Advancements Expected to Drive Virtual Reality Growth in Healthcare
News | Advanced Visualization | April 04, 2019
Increasing demand for innovative diagnostic techniques, neurological disorders and increasing disease awareness are...
Medivis Unveils AnatomyX Augmented Reality Education Platform
Technology | Advanced Visualization | April 02, 2019
Medical imaging and visualization company Medivis announced the launch of AnatomyX, its augmented reality (AR) platform...