Feature | July 10, 2013

Sugar Makes Cancer Light-up in MRI Scanners

glucoCEST University College London Tumors MRI glucose

UCL scientists have developed a new technique for detecting the uptake of sugar in tumors, using magnetic resonance imaging.

Tumors use large quantities of glucose to sustain their growth. By injecting normal, unlabeled sugar, UCL scientists have developed a way to detect its accumulation in tumors.

July 10, 2013 — A new technique for detecting cancer by imaging the consumption of sugar with magnetic resonance imaging (MRI) has been unveiled by University College London (UCL) scientists. The breakthrough could provide a safer and simpler alternative to standard radioactive techniques and enable radiologists to image tumors in greater detail.

The new technique, called glucose chemical exchange saturation transfer (glucoCEST), is based on the fact that tumors consume much more glucose (a type of sugar) than normal, healthy tissues in order to sustain their growth.

The researchers found that sensitizing an MRI scanner to glucose uptake caused tumors to appear as bright images on MRI scans of mice.

Lead researcher Dr. Simon Walker-Samuel, from the UCL Centre for Advanced Biomedical Imaging (CABI) said: "GlucoCEST uses radio waves to magnetically label glucose in the body. This can then be detected in tumors using conventional MRI techniques. The method uses an injection of normal sugar and could offer a cheap, safe alternative to existing methods for detecting tumors, which require the injection of radioactive material." Professor Mark Lythgoe, director of CABI and a senior author on the study, said: "We can detect cancer using the same sugar content found in half a standard sized chocolate bar. Our research reveals a useful and cost-effective method for imaging cancers using MRI — a standard imaging technology available in many large hospitals."

He continued: "In the future, patients could potentially be scanned in local hospitals, rather than being referred to specialist medical centers." The study is published in the journal Nature Medicine and trials are now underway to detect glucose in human cancers.

According to UCL's Professor Xavier Golay, another senior author on the study: "Our cross-disciplinary research could allow vulnerable patient groups such as pregnant women and young children to be scanned more regularly, without the risks associated with a dose of radiation." Walker-Samuel added: "We have developed a new state-of-the-art imaging technique to visualize and map the location of tumors that will hopefully enable us to assess the efficacy of novel cancer therapies."           

For more information: www.ucl.ac.uk

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 A brief article from Henry Ford Health System in Detroit, published today in Radiology, reports on the first presumptive case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy.

A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Image courtesy of the Radiological Society of North America (RSNA)

News | Coronavirus (COVID-19) | March 31, 2020
March 31, 2020 — A brief article fr
M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers

M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers. (c) University of Maryland Greenebaum Comprehensive Cancer Center

News | Prostate Cancer | March 05, 2020
March 5, 2020 — Using a combination of...
MR Solutions’ dry magnet MRI system for molecular imaging on display at EMIM 2020
News | Magnetic Resonance Imaging (MRI) | February 28, 2020
February 28, 2020 — MR Solutions will be displaying its la
An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
A cutting-edge magnet resonance imaging (MRI) technique to detect iron deposits in different brain regions can track declines in thinking, memory and movement in people with Parkinson's disease #Parkinsons #MRI

Summary steps of the processing pipeline for QSM reconstruction (phase pre-processing and map estimation) and whole brain/regional analysis. ANTs, advanced normalisation tools; MP-RAGE, magnetisation-prepared, 3D, rapid, gradient-echo; MSDI, multi-scale dipole inversion; QSM, quantitative susceptibility mapping; ROI, region of interest; SWI, susceptibility weighted imaging.

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — A cutting-edge...