Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor

Innovations in Radiotherapy and Radiology at Henry Ford Hospital

Detroit hospital is using new technology and techniques to improve patient outcomes

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new research and technology innovations they are using. So, it was an honor when ITN was invited to conduct a site visit at Henry Ford last fall to tour the hospital's facilities and conduct numerous video interviews to better understand the workings of the institution. 

MRI-guided Radiation Oncology

The Henry Ford Hospital ViewRay MRIdian MR-guided radiation therapy system.To improve radiation therapy outcomes, Henry Ford wanted direct visualization of tumors during therapy using magnetic resonance imaging (MRI). It purchased a ViewRay MRIdian linear accelerator (linac) system in 2017 and its staff is active in research involving MRI-guided radiotherapy. ITN toured the system installed at the Henry Ford Medical Center — Cottage location. We spoke with Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute, who described the benefits the department has realized from using the first U.S. Food and Drug Administration (FDA)-approved MRI-guided radiation therapy system in the VIDEO: Clinical Use of the ViewRay MRIdian Linac System at Henry Ford.

Movsas and Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology, also discussed Henry Ford Hospital's involvement in a national clinical trial assessing the effectiveness of MRI-guided radiation therapy in pancreatic cancer in the VIDEO: MRI-Guided Radiation Therapy Trial for Pancreatic Cancer. They said there are high hopes that image-directed therapy might help improve outcomes in this cancer, which has 91 percent mortality rate. 

Watch a quick VIDEO walkthrough of the MRI radiotherapy system at Henry Ford Hospital.

 

Synthetic CT Images for Treatment Planning Created From MRI

Synthetic CT images created from an MRI of a phantom at Henry Ford for radiotherapy treatment planning.MRI has much better soft tissue resolution than computed tomography (CT), however CT scans are required to create the treatment plans used to guide radiotherapy systems. To avoid the use of two separate scans and the cost and additional X-ray dose involved, Glide-Hurst has headed research efforts to create synthetic CT images from MRI for use in treatment planning. She explains how this process works and shows some examples in the VIDEO: Deriving Synthetic CT Images for Radiotherapy Treatment Planning.

Glide-Hurst is an expert in oncology imaging as it relates to radiotherapy and offers insights in the VIDEO: Using Advanced CT to Enhance Radiation Therapy Planning. She describes how the department uses advanced CT software and techniques to improve radiation therapy treatment plans. 

Interact with a 360 degree photo of Henry Ford's dedicated radiotherapy treatment planning CT scanner.

 

Automating Cardiac Segmentation to Avoid Irradiating Critical Structures

One of the research projects Henry Ford is working on is the automated registration and segmentation of cardiac structures in treatment planning scans for breast cancer radiation therapy. This can save a lot of time in post-processing. Eric Morris, a Ph.D. candidate at Henry Ford and Wayne State University, explains his project in the VIDEO: Automated Cardiac Segmentation for Breast Cancer Radiotherapy

 

Treating Liver Cancer With Y90 Embolization

Scott Schwarts, M.D., said one of the most innovative new procedures at Henry Ford Hospital's IR department is Y-90 embolization therapy for liver cancer.Henry Ford has a very busy interventional radiology (IR) department that has six labs and is planning to build out two more. One of these labs is a dedicated neuro-interventional room with a bi-plane angiography system. The IR department also has two dedicated CT systems and one dedicated ultrasound system. 

Among the new procedures the department is most proud of is yttrium-90 (Y90) embolization therapy to treat liver cancer, said Scott Schwartz, M.D., interventional radiologist and program director for IR residencies and the vascular and interventional radiology fellowship at Henry Ford Hospital. The IR operator navigates a catheter to the liver tumor and releases the microsphere filled with the radioactive element. Instead of conventional embolization of the tumor, the microscopic beads embed themselves inside the vasculature of the tumor and the radiation kills the tumor from within. 

Schwartz explains more about the procedure in the VIDEO: Y90 Embolization of Liver Cancer at Henry Ford Hospital.

Interact with a 360 degree photo of the dedicated neuro-interventional IR lab at Henry Ford Hospital. It is centered on a Siemens Artis Zee bi-plane system, has a dedicated ultrasound unit and the cabinets contain neuro-interventional-specific devices. It is focused on acute stroke cases, similar to a cardiac cath lab where the time to revascularization to save brain tissue is the same as the door-to-balloon "time is muscle" philosophy.

 

Guiding Brain Procedures With Live MRI

Staff at Henry Ford Hospital's neuro-MRI suite showing how the surgical instruments are all MRI safe.To enhance its ability to improve outcomes in brain surgery, Henry Ford Hospital created an MRI neuro-interventional suite. This neuro-procedure room connects through a door to a traditional operating room, and the patient can be transferred using a trolley cot system to move between the two rooms.

It uses a Philips 1.5T Achieva MRI system. The room includes MRI-safe surgical instruments, furniture and anesthesia system.

Take a quick look at the room layout in this VIDEO.

 

 

 

 

Advanced Cardiac Imaging Aids Structural Heart Interventions

Dee Dee Wang, M.D., with her collection of 3D printed hearts from patients in the structural heart program at Henry Ford Hospital.Henry Ford has a robust interventional structural heart program, and pioneered some of the devices and techniques used today. One of the key elements of that program is its use of advanced cardiac imaging. Dee Dee Wang, M.D., director of structural heart imaging, was one of the leading developers of 3-D printing patient's hearts from their CT scans to evaluate if they qualified for complex transcatheter procedures. The models were also used to size devices and preplan procedures, and then as an anatomical reference during the procedures. The program recently celebrated its 1,000th structural heart patient treated with the help of a 3-D printed model. 

Here is a sample of the collection of 3-D printed hearts Wang has in her office. 

One of the newest interventions is transcatheter replacement of the mitral valve. Wang explained how patient survival depends on keeping the left ventricular outflow track (LVOT) clear and using 3-D imaging to predict what the neo-LVOT will look like prior to transcatheter mitral valve replacement (TMVR) procedures. The close proximity between the aortic and mitral valves in the left ventricle anatomy makes it critical to assess any mitral valve overhang that will obstruct blood flow out of the left ventricle. 

She explains this issue in more detail in the VIDEO: Defining the Neo-LVOT in Transcatheter Mitral Valve Replacement.

Here is another example of how advanced imaging and 3-D printing plays a role in the new types of structural heart procedures. This 360 degree photo shows Wang explaining a caval valve implantation to treat tricuspid valve regurgitation. 

Find more radiology and radiation oncology content from Henry Ford Hospital

Find cardiology program-related Henry Ford Hospital content

Related Content

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.
Novel Coronavirus 2019-nCoV Pneumonia. #coronavirus #nCoV2019 #2019nCoV #COVID19

Image by _freakwave_ from Pixabay 

News | Computed Tomography (CT) | February 16, 2020
February 16, 2020 — The following statement was issued by the U.S.
negative RT-PCR results and chest CT findings compatible with 2019-nCoV pneumonia. #coronavirus #nCoV2019 #2019nCoV #COVID19

Figure 1: Patient flowchart. Of 167 patients screened, 5 (3%) had negative RT-PCR results and chest CT findings compatible with 2019-nCoV pneumonia. Chart courtesy of Radiology

Feature | Computed Tomography (CT) | February 14, 2020
As the 2019-nCoV Pneumonia is taking the world by storm, researchers have found a possible way to predict this virus
Hyperfine Research, Inc. announced that it has received U.S. Food and Drug Administration (FDA) 510(k) clearance for the world’s first bedside Magnetic Resonance Imaging (MRI) system

Hyperfine's point-of-care MRI wheels directly to the patient’s bedside, plugs into a standard electrical wall outlet, and is controlled via a wireless tablet. Photo courtesy of Business Wire

News | Magnetic Resonance Imaging (MRI) | February 12, 2020
February 12, 2020 — Hyperfine Research, Inc. announced that i
Mobile devices proved both reliable and accurate for the clinical decision to administer IV thrombolysis in patients with acute stroke

Appearance of same unenhanced CT scan on three reading systems: E-2620 monitor (Barco) (A), Galaxy S8 Plus (Samsung) smartphone (B) and ThinkPad T460s laptop computer (Lenovo) (C).

News | Computed Tomography (CT) | February 12, 2020
February 12, 2020 — Mobile devices proved both reliable and accurate for the clinical decision to administer IV throm
The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly

Image courtesy of GE Healthcare

News | Magnetic Resonance Imaging (MRI) | February 11, 2020
February 11, 2020 — The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly in the fo
Varian announced it has received FDA 510(k) clearance for its Ethos therapy, an Adaptive Intelligence solution. Ethos therapy is an artificial intelligence (AI)-driven holistic solution that provides an opportunity to transform cancer care.
News | Image Guided Radiation Therapy (IGRT) | February 11, 2020
February 11, 2020 — Varian announced it has received FDA 510(k) c
CT image of Novel Coronavirus 2019-nCoV from the Radiology article showing a baseline CT image of a 75 year old male with multiple patchy areas of pure ground glass opacity (GGO) and GGO with reticular and/or interlobular septal thickening. Follow-up CT images on day 3 after admission show an overlap of organizing pneumonia with diffuse alveolar damage in that it is more diffuse and associated with underlying reticulation. Read more and see 15 more images from novel coronavirus patients in the article.

An image from the Radiology article showing a baseline CT image of a 75 year old male with multiple patchy areas of pure ground glass opacity (GGO) and GGO with reticular and/or interlobular septal thickening. Follow-up CT images on day 3 after admission show an overlap of organizing pneumonia with diffuse alveolar damage in that it is more diffuse and associated with underlying reticulation. Read more and see 15 more images from novel coronavirus patients in the article.

Feature | Computed Tomography (CT) | February 11, 2020
February 11, 2020 — The Radiological Society of North America (RSNA) jo
The radiation therapy market is projected to grow in through 2026

Image courtesy of Accuray

News | Proton Therapy | February 10, 2020
February 10, 2020 — Amid technological advancement, and notable research and development activities, the global ...