Feature | Information Technology | July 01, 2019 | By Greg Freiherr

Are Shallow Networks Better Than Deep Ones?

“Shallow” learning promises better artificial intelligence, say SIIM presenters

David Anderson at SIIM

David Anderson presents information about the development of artificial Intelligence (AI) at SIIM 2019 as his father, Charles, looks on from a front row seat. The father-son team presented information at the SIIM annual meeting about their use of relatively shallow Deep Learning networks to analyze chest radiographs with AI.

Greg Freiherr

Greg Freiherr

Two simple neural networks are better than one complex one, according to a father-son team of entrepreneurs. On June 27 the two described “A Two-Stage Deep Learning Approach to Chest X-Ray Analysis” during the 2019 meeting of the Society of Imaging Informatics in Medicine in Denver.

 

Diagnostic decisions coming from models built using two “shallow” neural networks can lead to faster, more accurate and more interpretable artificial intelligence for radiography and other imaging modalities, according to David Anderson.

“When you have a literal deep (learning) network you have lots and lots of computational nodes and lots of layers of those nodes. A shallower network means that there are fewer computations so it is less math going on, which means you can look inside of it and see what it is doing — you can pull it apart,” Anderson told Imaging Technology News after the SIIM presentation.

He and his father, Charles, described their work at SIIM 2019 as a tag team — David presenting technical information first; Charles Anderson following with broader perspectives. Both men work at privately held Pattern Exploration, where Charles Anderson, Ph.D., is CEO; David is the machine learning developer.

David cited research1 & 2 into the automated analysis of chest X-ray images as the basis for the work done at Pattern Exploration. The use of “shallow” networks allows training with unlabelled data, which makes training less difficult and more efficient, he said. The use of these networks can also make the logic underlying AI less opaque.

 

Making the “Box” Transparent

Many have described deep learning as leading to algorithms that are “black boxes.” If shallower networks are used, however, the result “is not black at all — if you have the right tools,” David Anderson told ITN. “You can say, ‘Here is what this network is doing.’”

The two, five-layer networks that the Andersons developed to model X-ray analysis represent deep learning despite their relatively shallow depth. (Deep learning is a subset of machine learning, which is a type of artificial intelligence.) These two networks have separate tasks. One aligns the images into a standard orientation so the patient spine, for example, is presented vertically. The other does the classification.

Charles, who also serves as a professor of computer science at Colorado State University, focused on the potential impact of the research. He also raised the potential utility of a verbal interface. The computer science professor described during his presentation how such a verbal interface might be used. “It would allow you to ask a quick question — like you do with Siri — and come back with an answer in a spoken language,” he summarized later for ITN.

Supporting verbal Q & A would allow the radiologist to focus on the screen, rather than intermittently shifting attention to input devices. Radiologists have told Charles that their priorities are speed and confidence that their decisions are correct.

 

Greg Freiherr is a contributing editor to Imaging Technology News (ITN). Over the past three decades, he has served as business and technology editor for publications in medical imaging, as well as consulted for vendors, professional organizations, academia, and financial institutions.

 

Related content and references:

1. P. Rajpurkar, et al. (2017) CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. https://arxiv.org/abs/1711.05225v3

2 I. M. Baltruschat, et al. (2018) Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification. https://arxiv.org/abs/1803.02315v1

How AI Might Provide a Safety Net for Patients and Providers

Editor’s note: This article is the ninth piece in a content series by Greg Freiherr covering the Society for Imaging Informatics in Medicine (SIIM) conference in June.

 

Related content:

How AI Might Provide a Safety Net for Patients and Providers 

Smart Algorithm Extracts Data from Radiology Reports 

PODCAST: Why Blockchain Matters In Medical Imaging

PODCAST: How to Fix Your Enterprise Imaging Network

PODCAST: 5 Low-Cost Ways To Slow Hackers

Cinebot: Efficient Creation of Movies and Animated Gifs for Presentation and Education Directly from PACS

DeepAAA Uses AI to Look Automatically For Aneurysms

Making AI Safe, Effective and Humane for Imaging

Related Content

Selecting an AI Marketplace for Radiology: Key Considerations for Healthcare Providers
Feature | Artificial Intelligence | October 18, 2019 | Sanjay Parekh, Ph.D.
October 18, 2019 — As the nascent market for...
Surgical Institute of Reading Chooses RamSoft's PowerServer Lite PACS
News | PACS | October 18, 2019
Surgical Institute of Reading recently selected RamSoft’s PowerServer Lite PACS (picture archiving and communication...
While electronic medical record systems have helped consolidate most patient data into one location, medical imaging IT systems has proved to be more difficult to replicate by large EMR vendors. This has made room in the market for third-party radiology IT vendors that allow easy integration with the larger EMRs like Epic and Cerner. This image shows Agfa's enterprise imaging system, leveraging its ability to be accessed anywhere with internet connection and pull images from radiology and surgery.

While electronic medical record systems have helped consolidate most patient data into one location, medical imaging IT systems has proved to be more difficult to replicate by large EMR vendors. This has made room in the market for third-party radiology information system vendors that allow easy integration with the larger EMRs like Epic and Cerner. This image shows Agfa's enterprise imaging system, leveraging its ability to be accessed anywhere with an internet connection and able to pull in images from both radiology and surgery. 

Feature | Enterprise Imaging | October 17, 2019 | Steve Holloway
October 17, 2019 — The growing influence and uptake of electronic medical records (EMRs) in healthcare has driven deb
USF Health Expands Digisonics System With Vascular Reporting
News | Cardiac PACS | October 17, 2019
University of South Florida (USF) Health in Tampa, Fla., has enhanced their use of the Digisonics Cardiovascular...
Intelerad's nuage Patient Portal

Intelerad's nuage Patient Portal. Image courtesy of Intelerad.

News | Enterprise Imaging | October 17, 2019
Intelerad Medical Systems announced that OneWelbeck, a London operator of specialist facilities for minimally-invasive...
An illustration of radiology department analytics data showing GE Healthcare’s business analytics software.

An illustration of radiology department analytics data showing GE Healthcare’s business analytics software.

Feature | Radiology Business | October 17, 2019 | By April Wilson
According to IBM, the world creates 2.5 quintillion bytes of data daily.
Image courtesy of Bethesda Health

Image courtesy of Bethesda Health

Feature | Radiology Business | October 17, 2019 | By Susan DeCathelineau
Few professions have experienced the dramatic changes that radiologists have over the past few years.
Using Compressed SENSE for faster MRI scans, healthcare providers can transform their radiology workflow.

Using Compressed SENSE for faster MRI scans, healthcare providers can transform their radiology workflow.

Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | October 16, 2019
Since the introduction of magnetic resonan...
Feature | Artificial Intelligence | October 16, 2019 | By Siddharth (Sid) Shah
The period between November through February is pretty interesting for the field of medical imaging — two major confe
At the annual meeting of the AHRA, Agfa Healthcare demonstrated a full-scale model of its DR 800, presenting the unit as a "game changer" for its multifunctionality.

At the annual meeting of the AHRA, Agfa Healthcare demonstrated a full-scale model of its DR 800, presenting the unit as a "game changer" for its multifunctionality.

Feature | AHRA | October 16, 2019 | By Greg Freiherr
Diversity was on display at the Association for Medical Imaging Mana...